Iodometri

BAB I
PENDAHULUAN

1.1       PENGERTIAN
Iodometri adalah analisa titrimetrik yang secara tidak langsung untuk zat yang bersifat oksidator seperti besi III, tembaga II,Kalium Permanganat dimana zat ini akan mengoksidasi iodida yang ditambahkan membentuk iodin. Iodin yang terbentuk akan ditentukn dengan menggunakan larutan baku tiosulfat .Pada titrasi iodometri, analit yang dipakai adalah oksidator yang dapat bereaksi dengan I- (iodide) untuk menghasilkan I2, I2 yang terbentuk secara kuantitatif dapat dititrasi dengan larutan tiosulfat. Dari pengertian diatas maka titrasi iodometri adalah dapat dikategorikan sebagai titrasi kembali.

1.2              LATAR BELAKANG
Istilah oksidasi mengacu pada setiap perubahan kimia dimana terjadi kenaikan bilangan oksidasi, sedangkan reduksi digunakan untuk setiap penurunan bilangan oksidasi.Berarti proses oksidasi disertai hilangnya elektron sedangkan reduksi ­memperoleh elektron. Oksidator adalah senyawa di mana atom yang terkandung mengalami penurunan bilangan oksidasi.Sebaliknya pada reduktor, atom yang terkandung mengalami kenaikan bilangan oksidasi. Oksidasi-reduksi harus selalu berlangsung bersama dan saling menkompensasi satu sama lain. Istilah oksidator reduktor mengacu kepada suatu senyawa, tidak kepada atomnya saja (Khopkar, 2003).
Oksidator lebih jarang ditentukan dibandingkan reduktor.Namin demikian, oksidator dapat ditentukan dengan reduktor. Reduktor yang lazim dipakai untuk penentuan oksidator adalah kalium iodida, ion titanium(III), ion besi(II), dan ion vanadium(II). Cara titrasi redoks yang menggunakan larutan iodium sebagai pentiter disebut iodimetri, sedangkan yang menggunakan larutan iodida sebagai pentiter disebut iodometri (Rivai, 1995).



BAB II
MATERI

Dalam proses analitis, iod digunakan sebagai zat pengoksid (iodimetri), dan ion iodida digunakan sebagai zat pereduksi (iodometri). Relatif beberapa zat merupakan pereaksi reduksiyang cukup kuat untuk dititrasi secara langsung dengan iodium. Maka jumlah penentuan iodometrik adalah sedikit. Akan tetapi banyak pereaksi oksidasi cukup kuat untuk bereaksisempurna dengan ion iodida, dan ada banyak penggunaan proses iodometrik. Suatu kelebihan ioniodida ditambahkan kepada pereaksi oksidasi yang ditentukan dengan larutan natrium tiosulfat.Iodometri adalah suatu proses analitis tak langsung yang melibatkan iod. Ion iodida berlebih ditambahkan pada suatu zat pengoksid sehingga membebaskan iod, yang kemudian dititrasidengan natrium tiosulfat. (R. A. Day, Jr & A. L .Underwood, Analisa Kimia Kuantitatif , Edisi V. Hal. 294)
Iodometri
Terdapat dua cara melakukan analisis dengan menggunakan senyawa pereduksi iodium yaitu secara langsung dan tidak langsung. Cara langsung disebut iodimetri (digunakan larutan iodium untuk mengoksidasi reduktor-reduktor yang dapat dioksidasi secara kuantitatif pada titik ekivalennya). Namun, metode iodimetri ini jarang dilakukan mengingat iodium sendiri merupakan oksidator yang lemah. Sedangkan cara tidak langsung disebut iodometri (oksidator yang dianalisis kemudian direakWsikan dengan ion iodida berlebih dalam keadaan yang sesuai yang selanjutnya iodium dibebaskan secara kuantitatif dan dititrasi dengan larutan natrium thiosilfat standar atau asam arsenit).(Bassett,1994).
Dengan kontrol pada titik akhir titrasi jika kelebihan 1 tetes titran. perubahan warna yang terjadi pada larutan akan semakin jelas dengan penambahan indikator amilum/kanji.

2.1       METODE ANALISA
            Metode titrasi iodometri langsung (iodimetri) mengacu kepada titrasi dengan suatu larutan iod standar. Metode titrasi iodometri tak langsung (iodometri) adalah berkenaan dengan titrasi dari iod yang dibebaskan dalam reaksi kimia
Iodium merupakan oksidator lemah. Sebaliknya ion iodida merupakan suatu pereaksi reduksi yang cukup kuat. Dalam proses analitik iodium digunakan sebagai pereaksi oksidasi (iodimetri) dan ion iodida digunakan sebagai pereaksi reduksi (iodometri). Relatif beberapa zat merupakan pereaksi reduksi yang cukup kuat untuk dititrasi secara langsung dengan iodium. Maka jumlah penentuan iodometrik adalah sedikit. Akan tetapi banyak pereaksi oksidasi cukup kuat untuk bereaksi sempurna dengan ion iodida, dan ada banyak penggunaan proses iodometrik. Suatu kelebihan ion iodida ditambahkan kepada pereaksi oksidasi yang ditentukan, dengan pembebasan iodium, yang kemudian dititrasi dengan larutan natrium thiosulfat.
Kegunaan iodine dalam alcohol yang di sebut tingtur yodium,merupakan obat antiseptic bagi luka-luka agar tidak terkena infeksi. Dalam industry tapioca,maizena dan terigu,larutan I2 dalam air dipakai untuk mengindentifikasi amilum, sebab I2 dengan amilum akan memberikan warna biru.
Senyawa- senyawa iodine yang penting yaitu :
a.       Kalium Iodat (KIO3) yang ditambahkan pada garam dapur agar tubuh kita memeperoleh iodine
b.      Iodoform (CHI3) suatu zat organic yang penting
c.       Perak Iodida (AgI) yang juga di gunakan dalam film fotografi.
(Underwood, Analisa Kimia Kuantitatif, edisi 4, Erlangga, 1994)
Larutan standar yang digunakan dalam kebanyakan proses iodometri adalah natrium thiosulfat. Garam ini biasanya berbentuk sebagai pentahidrat Na2S2O3.5H2O . Larutan tidak boleh distandarisasi dengan penimbangan secara langsung, tetapi harus distandarisasi dengan standar primer. Larutan natrium thiosulfat tidak stabil untuk waktu yang lama
(Day & Underwood, 1981)
Penggunaan air yang masih mengandung CO2 sebagai pelarut akan menyebabkan peruraian S2O32- membentuk belerang bebas. Belerang ini menyebabkan kekeruhan. Terjadinya peruraian itu juga dipicu bakteri Thiobacillus thioparus. Bakteri yang memakan belerang akhirnya masuk kelarutan itu, dan proses metaboliknya akan mengakibatkan belerang koloidal. Belerang ini akan menyebabkan kekeruhan, bila timbul kekeruhan larutan harus dibuang.



Pembuatan natrium thiosulfat dapat ditempuh dengan cara :
1.      Melarutkan garam kristalnya pada aquades yang mendidih
2.      Menambahkan 3 tetes kloroform (CHCl3) atau 10 mg merkuri klorida (HgCl2) dalam 1 lter larutan
3.      Larutan yang terjadi disimpan pada tempat yang tidak terkena cahaya matahari.
Biasanya air yang digunakan untuk menyiapkan larutan tiosulfat dididihkan agar steril, dan sering ditambahkan boraks atau natrium karbonat sebagai pengawet.
Oksidasi tiosulfat oleh udara berlangsung lambat. Tetapi runutan tembaga yang kadang-kadang terdapat dalam air suling akan mengkatalis oksidasi oleh udara ini.
Tiosulfat diuraikan dalam larutan asam dengan membentuk belerang sebagai endapan mirip susu.
S2O32- +2H+ → H2S2O3 → H2SO3 + S
Tetapi reaksi itu lambat dan tak terjadi bila tiosulfat dititrasikan kedalam larutan iod yang asam, asal larutan diaduk dengan baik. Reaksi antara iod dan tiosulfat jauh lebih cepat dari pada reaksi penguraian.
Iodin mengoksidasi tiosulfat menjadi ion tetrationat:
I2 + 2S2O32- → 2I- + S4O62-
Reaksinya berjalan cepat, sampai selesai, dan tidak ada reaksi sampingan. Berat ekivalen dari Na2S2O3. 5H2O adalah berat molekulnya, 248,17. Tiosulfat teroksidasi secara parsial menjadi sulfat:
4I2 + S2O32- + 5H2O → 8I- + 2SO42- + 10H+
Dalam larutan yang netral, atau sedikit alkalin, oksidasi menjadi sulfat tidak muncul, terutama jika iodin dipergunakan sebagai titran.
Ada dua metode titrasi iodometri, yaitu :
1.      Secara langsung (iodimetri) Menurut cara ini suatu zat reduksi dititrasi secara langsung oleh iodium
misal pada titrasi Na2S2O3 oleh I2.
2Na2S2O3 + I2 → 2NaI + Na2S4O6
Indiator yang digunakan pada reaksi ini, yaitu larutan kanji. Apabila larutan thiosulfat ditambahkan pada larutan iodine, hasil akhirnya berupa perubahan penampakan dari tak berwarna menjadi berwarna biru. Tetapi apabila larutan iodine ditambahkan kedalam larutan thiosulfat maka hasil akhirnya berupa perubahan penampakan dari berwarna menjadi berwarna biru.
2.      Secara tak langsung (iodometri) Disebut juga sebagai iodometri.Dalam hal ini ion iodide sebagai pereduksi diubah menjadi iodium-iodium yang terbentuk dititrasi, dengan larutan standar Na2S2O3. Jadi cara iodometri digunakan untuk menentukan zat pengoksidasi, misal pada penentuan suatu zat oksidator ini (H2O2). Pada oksidator ini ditambahkan larutan KI dan asam hingga akan terbentuk iodium yang kemudian dititrasi dengan larutan Na2S2O3.
H2O2 + 2HCl → I2 + 2KCl + 2H2O.C
dan sangat larut dalam pelarutan yang mengandung ion iodide.
Iodium sedikit larut dalam air (0,00134 mol/liter pada 25
Berdasarkan reaksi :

I2 + I- → I3-
dengan tetapan kesetimbangan pada 25 ºC. Larutan baku ion dapat langsung dibuat dari unsur murninya. Cara titrasi oksidasi reduksi yang dikenal ada dua :
1.      Oksidimetri
Yaitu titrasi redoks dengan menggunakan larutan baku yang bersifat oksidator.
Misal: Sulfur dioksida dan hydrogen sulfide, timah (II) klorida , logam dan amalgam.
2.      Reduksimetri
Yaitu titrasi redoks dengan menggunakan larutan baku yang bersifat reduktor.
Misal : Natrium dan Hidrogen Peroksida, Kalium dan amonium peroksidisulfat,natrium Bismutat (NaBiO3).
Ada dua proses metode titrasi iodometri, yaitu :
1.        Proses-proses iodometrik langsung. Pada Iodometri langsung sering menggunakan zat pereduksi yang cukup kuat seperti tiosulfat, Arsen (III), Stibium (III), Antimon (II), Sulfida, sulfite, Timah (II), Ferasianida.Kekuatan reduksi yang dimiliki oleh beberapa
dari substansi ini tergantung pada konsentrasi ion hidrogen, dan reaksi dengan iodin baru dapat dianalisis secara kuantitatif hanya bila kita melakukan penyesuaian pH yang repot.
Dalam proses iodometri langsung ini reaksi antara iodium dan thiosulfat dapat berlangsung sempurna. Kelebihan ion Iodida yang ditambahkan pada pereaksi oksidasi yang ditentukan, dengan pembebasan iodium, kelebihan ini dapat dititrasi dengan Natrium Tiosulfat. Menurut cara ini suatu zat reduksi dititrasi secara langsung oleh iodium, misal pada titrasi Na2S2O3 oleh I2.

2Na2S2O3 + I2 → 2NaI + Na2S4O6

Indikator yang digunakan pada reaksi ini, yaitu larutan kanji. Apabila larutan thiosulfat ditambahkan pada larutan iodin, hasil akhirnya berupa perubahan penampakan dari tak berwarna menjadi berwarna biru. Tetapi apabila larutan iodine ditambahkan kedalam larutan thiosulfat maka hasil akhirnya berupa perubahan penampakan menjadi berwarna biru.
2.   Proses-proses Tak Langsung atau Iodometrik. Dalam ion iodida sebagai pereduksi diubah menjadi iodium-iodium yang terbentuk dititrasi, dengan larutan standar Na2S2O3.
Jadi cara iodometri digunakan untuk menentukan zat pengoksidasi, misal pada penentuan suatu zat oksidator ini (H2O2). Pada oksidator ini ditambahkan larutan KI dan asam hingga akan terbentuk iodium yang kemudian dititrasi dengan larutan.
Na2S2O3.
H2O2 + 2HCl → I2 + 2KCl + 2H2O.

Banyak agen pengoksidasi yang kuat dapat dianalisa dengan menambahkan kalium iodida berlebih dan menitrasi iodin yang dibebaskan. Karena banyak agen pengoksidasi membutuhkan suatu larutan asam untuk bereaksi dengan iodin, natrium tiosulfat biasanya dipergunakan sebagai titrannya, dalam keadaan pH 3-4. Titrasi dengan arsenik (III) (di atas) membutuhkan sebuah larutan yang sedikit alkalin.
(R.A Day, A.L. Underwood. 2002. “ Analisa Kimia Kuantitatif,” Edisi keenam.hal: 298)
Beberapa tindakan pencegahan harus diambil dalam menangani larutan kalium iodida untuk menghindari kesalahan. Misalnya ion iodida dioksidasi oleh oksigen dari udara.


4H+ + 4I- + O2 → 2I2 + 2H2O

Reaksi ini lambat dalam larutan netral, tetapi lebih cepat dalam larutan berasam dan dipercepat oleh cahaya matahari. Setelah penambahan kalium iodida pada larutan berasam dari suatu pereaksi oksidasi, larutan harus tidak dibiarkan untuk waktu yang lama berhubungan dengan udara, karena iodium tambahan akan terbentuk oleh reaksi yang terdahulu. Nitrit harus tidak ada, karena akan direduksikan oleh ion iodida menjadi nitrogen (II) oksida yang selanjutnya dioksidasi kembali menjadi nitrit oleh oksigen dari udara:

2HNO2 + 2H+ + 2I- → 2NO + I2 + 2H2O
4NO + O2 + 2H2O → 4HNO2
Kalium iodida harus bebas iodat karena kedua zat ini bereaksi dalam larutan berasam untuk membebaskan iodium:
IO3- + 5I- + 6H+ → 3I2 + 3H2O

2.2       PRINSIP ANALISA METODE YANG DIGUNAKAN
            Prinsip dari iodi/iodometri adalah reaksi reduksi oksidasi. Reaksi-reaksi yang terjadi meliputi perubahan bilangan oksidasi atau perpindahan elektron-elektron dari zat-zat yang bereaksi. Iodimetri adalah penyelidikan untuk mengetahui kadar suatu zat dengan menggunakan larutan standar iodium, sedangkan iodometri adalah titrasi terhadap iodium yang dibebaskan dari suatu reaksi kimia.
            Chlorine akan membebaskan ion bebas dari larutan KI pada pH 8 atau kurang. Iodium ini akan dititrasi dengan larutan standar sodium thiosulfate dengan indikator starch dalam keadaan pH 3-4, sebab pada pH netral reaksi ini tidak stoikiometri dengan reaksi oksidasi parsial thiosulfate menjadi sulfat.


2.3       PERHITUNGAN KADAR SAMPEL YANG DI ANALISA
·         Pembuatan Larutan Baku KIO3 0,1N
Massa KIO3 = 0,36 gr
BM KIO3 = 214,0064 gr/mol
V pengenceran  = 0,1 L
N KIO3 = ………..?
N KIO3= 0,1009 N
·         Pembakuan Larutan Baku Na2S2O3 dengan Larutan Baku KIO3 0,1N
N KIO3 = 0,1009 N
V KIO3 = 25 mL
V Na2S2O3 = 0,4 mL
N Na2S2O3 = ……..?
N Na2S2O3 = 6,25N
·         Penentuan Kadar Cu2+ dalam CuSO4.5H2O
V Na2S2O3 = 0,55 mL
N Na2S2O3 = 6,25 N
Massa sampel  = 1 gr
% Cu2+ dalam sampel = ……?
2 S2O32- + I2 S4O62- + 2I-
2 mgrek S2O32- = mgrek I2
2 (V x N) S2O32- = mol I2 x e I2
mol I2 = 2
= 2
=  0,0034375 mol
·         Reaksi :
                                    2 Cu2++  4 I- 2 CuI- +  I2
                                    mol Cu2+ = 2 mol I2
= 2 x 3,4375 x 10-3 mol
= 6,8 x 10-3 mol
massa Cu2+ = mol Cu2+ x  BA Cu2+
= 6,8 x 10-3 mol x 63,546 mol
= 0,4321 gr
% Cu dalam sampel = 43,21

2.4       PENERAPAN METODE ANALISA
Garam KIO3 mampu mengoksidasi iodida menjadi iod secara kuantitatif dalam larutan asam.  Oleh karena itu digunakan sebagai larutan standar dalam proses titrasi Iodometri ini.  Selain itu juga karena sifat Iod itu sendiri yang mudah teroksidasi oleh oksigen dalam lingkungan sehingga iodida mudah terlepas.Reaksi ini sangat kuat dan hanya membutuhkan sedikit sekali kelebihan ion hidrogen untuk melengkapi reaksinya.Namun kekurangan utama dari garam ini sebagai standar primer adalah bahwa bobot ekivalennya yang rendah.
Larutan standar ini sangat stabil dan menghasilkan iod bila diolah dengan asam :
IO3- +   5I- +   6H+ 3 I2 +     3H2O
Larutan KIO3 memiliki dua kegunaan penting, pertama, adalah sebagai sumber dari sejumlah iod yang diketahui dalam titrasi, ia harus ditambahkan kepada larutan yang mengandung asam kuat, ia tak dapat digunakan dalam medium yang netral atau memiliki keasaman rendah.  Yang kedua, dalam penetapan kandungan asam dari larutan secara iodometri, atau dalam standarisasi larutan asam keras.  Larutan baku KIO3 0,1 N dibuat dengan melarutkan beberapa gram massa kristal KIO3 yang berwarna putih dengan menggunakan aquades dan mengencerkannya.
1. Pembakuan Larutan Na2S2O3 dengan Larutan Baku KIO3
Percobaan ini menggunakan metode titrasi iodometri yaitu titrasi tidak  langsung dimana mula-mula iodium direaksikan dengan iodida berlebih, kemudian iodium yang terjadi dititrasi dengan natrium thiosulfat.  Larutan baku yang digunakan untuk standarisasi thiosulfat sendiri adalah KIO3 dan terjadi reaksi:
Oksidator + KII2
I2 +  2Na2S2O3 2NaI  +  Na2S4O6
Natrium tiosulfat dapat dengan mudah diperoleh dalam keadaan kemurnian yang tinggi, namun selalu ada saja sedikit ketidakpastian dari kandungan air yang tepat, karena sifat flouresen atau melapuk-lekang dari garam itu dan karena alasan-alasan lainnya.  Karena itu, zat ini tidak memenuhi syarat untuk dijadikan sebagai larutan baku standar primer.  Natrium tiosulfat merupakan suatu zat pereduksi, dengan persamaan reaksi sebagai berikut  :
2S2O32- S4O62- +   2e-
Pembakuan larutan natrium tiosulfat dapat dapat dilakukan dengan menggunakan kalium iodat, kalium kromat, tembaga dan iod sebagai larutan standar primer, atau dengan kalium permanganat atau serium (IV) sulfat sebagai larutan standar sekundernya.  Namun pada percobaan ini senyawa yang digunakan dalam proses pembakuan natrium tiosulfat adalah kalium iodat standar.
Larutan thiosulfat sebelum digunakan sebagai larutan standar dalam proses iodometri ini harus distandarkan terlebih dahulu  oleh kalium iodat yang merupakan standar primer.  Larutan kalium iodat ini ditambahkan dengan asam sulfat pekat, warna larutan menjadi bening.Dan setelah ditambahkan dengan kalium iodida, larutan berubah menjadi coklat kehitaman.Fungsi penambahan asam sulfat pekat dalam larutan tersebut adalah memberikan suasana asam, sebab larutan yang terdiri dari kalium iodat dan klium iodida berada dalam kondisi netral atau memiliki keasaman rendah.  Reaksinya adalah sebagai berikut :
IO3-+  5I- +  6H+ →  3I2 +  3H2O
Indikator yang digunakan dalam proses standarisasi ini adalah indikator amilum 1%.  Penambahan amilum yang dilakukan saat mendekati titik akhir titrasi dimaksudkan agar amilum tidak membungkus iod karena akan menyebabkan amilum sukar dititrasi untuk kembali ke senyawa semula. Proses titrasi harus dilakukan sesegera mungkin, hal ini disebabkan sifat I2 yang mudah menuap. Pada titik akhir titrasi iod yang terikat juga hilang bereaksi dengan titran sehingga warna biru mendadak hilang dan perubahannya sangat jelas.Penggunaan indikator ini untuk memperjelas perubahan warna larutan yang terjadi pada saat titik akhir titrasi.Sensitivitas warnanya tergantung pada pelarut yang digunakan.Kompleks iodium-amilum memiliki kelarutan yang kecil dalam air, sehingga umumnya ditambahkan pada titik akhir titrasi.  Jika larutan iodium dalam KI pada suasana netral dititrasi dengan natrium thiosulfat, maka :
I3-    +   2S2O32- 3I-     +   S4O62-
S2O32-   +   I3- S2O3I+   2I-
2S2O3I+  I- S4O62-   +  I3-
S2O3I-   +  S2O32- S4O62-   +  I-
Dari hasil perhitungan diketahui besarnya konsentrasi natrium thiosulfat yang digunakan sebagai larutan baku standar sebesar 6,25 N.
2. Penentuan Kadar Cu2+ dengan Larutan Baku Na2S2O3
Pada penentuan kadar Cu dengan larutan baku Na2S2O3 akan terjadi beberapa perubahan warna larutan sebelum titik akhir titrasi.  Tembaga murni dapat digunakan sebagai standar primer untuk natrium thiosulfat dan direkomendasikan jika thiosulfat harus digunakan untuk menetapkan tembaga.  Potensial standar pasangan Cu(II) – Cu(I) adalah +0,15 V dan karena itu iod merupakan pengoksidasi yang lebih baik dari pada ion Cu(II).  Tetapi bila ion iodida ditambahkan ke dalam larutan Cu(II) akan terbentuk endapan Cu(I).
2Cu2++  4I- 2CuI(s) +  I2
Penentuan kadar Cu2+ dalam larutan dengan bantuan larutan natrium tiosulfat yang dilakukan mengencerkan 5 mL sampel garam hingga 100 mL dan mengambil 10 mL hasil pengenceran tersebut untuk ditambahkan dengan larutan KI 10% dan menitrasi dengan larutan baku natrium tiosulfat hingga larutan yang semula berwarna coklat tua menjadi larutan yang berwarna kuning muda.  Kemudian larutan tersebut ditambahkan dengan 4 mL larutan amilum 1 % menghasilkan larutan yang semula berwarna kuning muda menjadi biru tua,
Penambahan indikator amilum 1% ini dimaksudkan agar memperjelas perubahan warna yang terjadi pada larutan tersebut. kemudian larutan tersebut dititrasi kembali dengan larutan natrium tiosulfat hingga warna biru pada larutan tepat hilang.  Untuk lebih memperjelas terjadinya reaksi tersebut, ke dalam larutan ditambahkan amilum.  Bertemunya I2 dengan amilum ini akan menyebabakan larutan berwarna biru kehitaman. Selanjutnya titrasi dilanjutkan kembali hingga warna biru hilang dan menjadi putih keruh.
I2   +  amilum  I2-amilum
I2-amilum  +  2S2O32-  2I-  +  amilum  +  S4O6-
Hal yang perlu diperhatikan setelah penambahan amilum adalah adanya sifat adsorpsi pada permukaan endapan tembaga(I) iodida. Sifat ini menyebabkan terjadinya penyerapan iodium dan apabila iodium ini dihilangkan dengan cara titrasi, maka titik akhir titrasi akan tercapai terlalu cepat. Oleh karena itu, sebelum titik akhir titrasi tercapai, yaitu pada saat warna larutan yang dititrasi dengan Na2S2O3 akan berubah dari biru menjadi bening, dilakukan penambahan kalium tiosianat KCNS.
Penambahan KCNS menyebabkan larutan kembali berwarna biru. Reaksi yang terjadi adalah sebagai berikut:
2Cu2+ + 2I- + 2SCN- → 2CuSCN ↓ + I2
Endapan tembaga(I) tiosianat yang terbentuk mempunyai kelarutan yang lebih rendah daripada tembaga(I) iodida sehingga dapat memaksa reaksi berjalan sempurna. Selain itu, tembaga(I) tiosianat mungkin terbentuk pada permukaan tembaga(I) iodida yang telah mengendap. Reaksinya sebagai berikut:
CuI ↓ + SCN- → CuSCN ↓ + I-
Penambahan larutan KCNS ini bertujuan sebagai larutan yang mengembalikan reaksi penambahan indikator amilum dalam larutan sehingga larutan menjadi kembali biru.  Reaksi yang berlangsung adalah
2Cu2+  +  4 I-  2CuI  +  I2
2S2O32-+  I2 S4O62-+   2I-
dari hasil pengamatan dan perhitungan, didapatkan jumlah volume titrasi larutan natrium tiosulfat yang dibutuhkan untuk merubah larutan dari warna coklat tua menjadi kuning muda setelah penambahan amilum maka larutan menjadi bening dan setelah penambahan KCNS maka larutan menjadi jernih kembali. Dari hasil perhitungan diperoleh massa tembaga pada larutan sampel sebesar 0,4321 gram dan kadar tembaga (%Cu2+) dalam larutan sample tersebut adalah sebesar 43,21 %.



BAB III
PENUTUP

3.1  KESIMPULAN
Berdasarkan tujuan, perhitungan dan pembahasan yang telah diuraikan sebelumnya, maka dapat ditarik beberapa kesimpulan berikut :
Ada dua cara analisis menggunakan senyawa iodium yaitu titrasi iodimetri atau dengan iodometri dimana iodium terlebih dahulu dioksidasi oleh oksidator misalnya KI.
Kadar tembaga dalam garam CuSO4.5H2O dapat ditentukan dengan cara iodometri.
Indikator yang dipakai adalah amilum karena amilum sangat peka terhadap iodium dan  terbentuk kompleks amilum berwarna biru cerah, saat ekivalen amilum terlepas kembali.
Massa tembaga pada larutan diketahui sebesar 0,4321 gram dan kadar tembaga dalam larutan sebesar 43,21 %





0 Response to "Iodometri"

Post a Comment